Part of the new Imaging libary: produces a BufferedImage, with and IndexColorModel, handles alpha channels and dithering.

This commit is contained in:
lehni 2004-06-17 09:51:13 +00:00
parent b19370cdbc
commit 0f40d6142b

View file

@ -1,7 +1,38 @@
/*
* Helma License Notice
*
* The contents of this file are subject to the Helma License
* Version 2.0 (the "License"). You may not use this file except in
* compliance with the License. A copy of the License is available at
* http://adele.helma.org/download/helma/license.txt
*
* Copyright 1998-2003 Helma Software. All Rights Reserved.
*
* $RCSfile$
* $Author$
* $Revision$
* $Date$
*/
package helma.image;
import java.awt.image.*;
/*
* @(#)Quantize.java 0.90 9/19/00 Adam Doppelt
*
* Modifications by JŸrg Lehni:
*
* - Support for alpha-channels.
* - Returns a BufferedImage of TYPE_BYTE_INDEXED with a IndexColorModel.
* - Dithering of images through helma.image.DiffusionFilterOp by setting
* the dither parameter to true.
* - Support for a transparent color, which is correctly rendered by GIFEncoder.
* All pixels with alpha < 0x80 are converted to this color when the parameter
* alphaToBitmask is set to true.
* - Removed the SQUARES lookup tables as multiplications of integer values
* shouldn't take more than one clock nowadays anyhow.
*/
package helma.image;
/**
* An efficient color quantization algorithm, adapted from the C++
@ -155,7 +186,7 @@ public class Quantize {
% Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
% Initializes data structures for nodes only as they are needed; (2)
% Chooses a maximum depth for the tree as a function of the desired
% number of colors in the output image (currently log2(colormap size)).
% number of colors in the output image (currently log2(colorMap size)).
%
% For each pixel in the input image, classification scans downward from
% the root of the color description tree. At each level of the tree it
@ -212,7 +243,7 @@ public class Quantize {
% the tree.
%
% Assignment generates the output image from the pruned tree. The
% output image consists of two parts: (1) A color map, which is an
% outpu t image consists of two parts: (1) A color map, which is an
% array of color descriptions (RGB triples) for each color present in
% the output image; (2) A pixel array, which represents each pixel as
% an index into the color map array.
@ -239,20 +270,21 @@ public class Quantize {
*/
final static boolean QUICK = true;
final static int MAX_RGB = 255;
final static int MAX_NODES = 266817;
final static int MAX_TREE_DEPTH = 8;
final static int MAX_CHILDREN = 16;
// these are precomputed in advance
static int SQUARES[];
// static int SQUARES[];
static int SHIFT[];
static {
SQUARES = new int[MAX_RGB + MAX_RGB + 1];
for (int i= -MAX_RGB; i <= MAX_RGB; i++) {
SQUARES[i + MAX_RGB] = i * i;
}
/*
* SQUARES = new int[MAX_RGB + MAX_RGB + 1]; for (int i= -MAX_RGB; i <=
* MAX_RGB; i++) { SQUARES[i + MAX_RGB] = i * i; }
*/
SHIFT = new int[MAX_TREE_DEPTH + 1];
for (int i = 0; i < MAX_TREE_DEPTH + 1; ++i) {
@ -261,39 +293,63 @@ public class Quantize {
}
/**
* Reduce the image to the given number of colors. The pixels are
* reduced in place.
* Reduce the image to the given number of colors. The pixels are reduced in
* place.
*
* @return The new color palette.
*/
public static int[] quantizeImage(int pixels[][], int max_colors) {
Cube cube = new Cube(pixels, max_colors);
public static BufferedImage process(BufferedImage source, int maxColors,
boolean dither, boolean alphaToBitmask) {
int type = source.getType();
int[] pixels;
// try to get the direct pixels of the BufferedImage
// this works for images of type INT_RGB, INT_ARGB and INT_ARGB_PRE
// for all others, a new array with rgb pixels is created!
if (type == BufferedImage.TYPE_INT_RGB
|| type == BufferedImage.TYPE_INT_ARGB
|| type == BufferedImage.TYPE_INT_ARGB_PRE) {
pixels = ((DataBufferInt) source.getRaster().getDataBuffer()).getData();
} else {
pixels = source.getRGB(0, 0, source.getWidth(), source.getHeight(), null, 0, source.getWidth());
}
Cube cube = new Cube(source, pixels, maxColors, dither, alphaToBitmask);
cube.classification();
cube.reduction();
cube.assignment();
return cube.colormap;
return cube.assignment();
}
static class Cube {
int pixels[][];
int max_colors;
int colormap[];
BufferedImage source;
int[] pixels;
int maxColors;
byte colorMap[][];
Node root;
int depth;
boolean dither;
boolean alphaToBitmask;
boolean addTransparency;
// firstColor is set to 1 when when addTransparency is true!
int firstColor = 0;
// counter for the number of colors in the cube. this gets
// recalculated often.
int colors;
int numColors;
// counter for the number of nodes in the tree
int nodes;
int numNodes;
Cube(int pixels[][], int max_colors) {
Cube(BufferedImage source, int[] pixels, int maxColors, boolean dither,
boolean alphaToBitmask) {
this.source = source;
this.pixels = pixels;
this.max_colors = max_colors;
this.maxColors = maxColors;
this.dither = dither;
this.alphaToBitmask = alphaToBitmask;
int i = max_colors;
// tree_depth = log max_colors
int i = maxColors;
// tree_depth = log maxColors
// 4
for (depth = 1; i != 0; depth++) {
i /= 4;
@ -306,107 +362,108 @@ public class Quantize {
} else if (depth < 2) {
depth = 2;
}
root = new Node(this);
}
/*
* Procedure Classification begins by initializing a color
* description tree of sufficient depth to represent each
* possible input color in a leaf. However, it is impractical
* to generate a fully-formed color description tree in the
* classification phase for realistic values of cmax. If
* colors components in the input image are quantized to k-bit
* precision, so that cmax= 2k-1, the tree would need k levels
* below the root node to allow representing each possible
* input color in a leaf. This becomes prohibitive because the
* tree's total number of nodes is 1 + sum(i=1,k,8k).
*
* A complete tree would require 19,173,961 nodes for k = 8,
* cmax = 255. Therefore, to avoid building a fully populated
* tree, QUANTIZE: (1) Initializes data structures for nodes
* only as they are needed; (2) Chooses a maximum depth for
* the tree as a function of the desired number of colors in
* the output image (currently log2(colormap size)).
*
* For each pixel in the input image, classification scans
* downward from the root of the color description tree. At
* each level of the tree it identifies the single node which
* represents a cube in RGB space containing It updates the
* following data for each such node:
*
* number_pixels : Number of pixels whose color is contained
* in the RGB cube which this node represents;
*
* unique : Number of pixels whose color is not represented
* in a node at lower depth in the tree; initially, n2 = 0
* for all nodes except leaves of the tree.
*
* total_red/green/blue : Sums of the red, green, and blue
* component values for all pixels not classified at a lower
* depth. The combination of these sums and n2 will
* ultimately characterize the mean color of a set of pixels
* represented by this node.
* Procedure Classification begins by initializing a color description
* tree of sufficient depth to represent each possible input color in a
* leaf. However, it is impractical to generate a fully-formed color
* description tree in the classification phase for realistic values of
* cmax. If colors components in the input image are quantized to k-bit
* precision, so that cmax= 2k-1, the tree would need k levels below the
* root node to allow representing each possible input color in a leaf.
* This becomes prohibitive because the tree's total number of nodes is
* 1 + sum(i=1,k,8k).
*
* A complete tree would require 19,173,961 nodes for k = 8, cmax = 255.
* Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
* Initializes data structures for nodes only as they are needed; (2)
* Chooses a maximum depth for the tree as a function of the desired
* number of colors in the output image (currently log2(colorMap size)).
*
* For each pixel in the input image, classification scans downward from
* the root of the color description tree. At each level of the tree it
* identifies the single node which represents a cube in RGB space
* containing It updates the following data for each such node:
*
* numPixels : Number of pixels whose color is contained in the RGB cube
* which this node represents;
*
* unique : Number of pixels whose color is not represented in a node at
* lower depth in the tree; initially, n2 = 0 for all nodes except
* leaves of the tree.
*
* totalRed/green/blue : Sums of the red, green, and blue component
* values for all pixels not classified at a lower depth. The
* combination of these sums and n2 will ultimately characterize the
* mean color of a set of pixels represented by this node.
*/
void classification() {
int pixels[][] = this.pixels;
int width = pixels.length;
int height = pixels[0].length;
// convert to indexed color
for (int x = width; x-- > 0; ) {
for (int y = height; y-- > 0; ) {
int pixel = pixels[x][y];
int red = (pixel >> 16) & 0xFF;
int green = (pixel >> 8) & 0xFF;
int blue = (pixel >> 0) & 0xFF;
addTransparency = false;
firstColor = 0;
for (int i = 0; i < pixels.length; i++) {
int pixel = pixels[i];
int red = (pixel >> 16) & 0xff;
int green = (pixel >> 8) & 0xff;
int blue = (pixel >> 0) & 0xff;
int alpha = (pixel >> 24) & 0xff;
if (alphaToBitmask)
alpha = alpha < 0x80 ? 0 : 0xff;
if (alpha > 0) {
// a hard limit on the number of nodes in the tree
if (nodes > MAX_NODES) {
System.out.println("pruning");
if (numNodes > MAX_NODES) {
// System.out.println("pruning");
root.pruneLevel();
--depth;
}
// walk the tree to depth, increasing the
// number_pixels count for each node
// numPixels count for each node
Node node = root;
for (int level = 1; level <= depth; ++level) {
int id = (((red > node.mid_red ? 1 : 0) << 0) |
((green > node.mid_green ? 1 : 0) << 1) |
((blue > node.mid_blue ? 1 : 0) << 2));
if (node.child[id] == null) {
int id = (((red > node.midRed ? 1 : 0) << 0)
| ((green > node.midGreen ? 1 : 0) << 1)
| ((blue > node.midBlue ? 1 : 0) << 2) | ((alpha > node.midAlpha ? 1
: 0) << 3));
if (node.children[id] == null) {
new Node(node, id, level);
}
node = node.child[id];
node.number_pixels += SHIFT[level];
node = node.children[id];
node.numPixels += SHIFT[level];
}
++node.unique;
node.total_red += red;
node.total_green += green;
node.total_blue += blue;
node.totalRed += red;
node.totalGreen += green;
node.totalBlue += blue;
node.totalAlpha += alpha;
} else if (!addTransparency) {
addTransparency = true;
numColors++;
firstColor = 1; // start at 1 as 0 will be the transparent
// color
}
}
}
/*
* reduction repeatedly prunes the tree until the number of
* nodes with unique > 0 is less than or equal to the maximum
* number of colors allowed in the output image.
*
* When a node to be pruned has offspring, the pruning
* procedure invokes itself recursively in order to prune the
* tree from the leaves upward. The statistics of the node
* being pruned are always added to the corresponding data in
* that node's parent. This retains the pruned node's color
* characteristics for later averaging.
* reduction repeatedly prunes the tree until the number of nodes with
* unique > 0 is less than or equal to the maximum number of colors
* allowed in the output image.
*
* When a node to be pruned has offspring, the pruning procedure invokes
* itself recursively in order to prune the tree from the leaves upward.
* The statistics of the node being pruned are always added to the
* corresponding data in that node's parent. This retains the pruned
* node's color characteristics for later averaging.
*/
void reduction() {
int threshold = 1;
while (colors > max_colors) {
colors = 0;
while (numColors > maxColors) {
numColors = firstColor;
threshold = root.reduce(threshold, Integer.MAX_VALUE);
}
}
@ -416,75 +473,113 @@ public class Quantize {
*/
static class Search {
int distance;
int color_number;
int colorIndex;
}
/*
* Procedure assignment generates the output image from the
* pruned tree. The output image consists of two parts: (1) A
* color map, which is an array of color descriptions (RGB
* triples) for each color present in the output image; (2) A
* pixel array, which represents each pixel as an index into
* the color map array.
*
* First, the assignment phase makes one pass over the pruned
* color description tree to establish the image's color map.
* For each node with n2 > 0, it divides Sr, Sg, and Sb by n2.
* This produces the mean color of all pixels that classify no
* lower than this node. Each of these colors becomes an entry
* in the color map.
*
* Finally, the assignment phase reclassifies each pixel in
* the pruned tree to identify the deepest node containing the
* pixel's color. The pixel's value in the pixel array becomes
* the index of this node's mean color in the color map.
* Procedure assignment generates the output image from the pruned tree.
* The output image consists of two parts: (1) A color map, which is an
* array of color descriptions (RGB triples) for each color present in
* the output image; (2) A pixel array, which represents each pixel as
* an index into the color map array.
*
* First, the assignment phase makes one pass over the pruned color
* description tree to establish the image's color map. For each node
* with n2 > 0, it divides Sr, Sg, and Sb by n2. This produces the mean
* color of all pixels that classify no lower than this node. Each of
* these colors becomes an entry in the color map.
*
* Finally, the assignment phase reclassifies each pixel in the pruned
* tree to identify the deepest node containing the pixel's color. The
* pixel's value in the pixel array becomes the index of this node's
* mean color in the color map.
*/
void assignment() {
colormap = new int[colors];
BufferedImage assignment() {
colorMap = new byte[4][numColors];
colors = 0;
root.colormap();
int pixels[][] = this.pixels;
if (addTransparency) {
// if a transparency color is added, firstColor was set to 1,
// so color 0 can be used for this
colorMap[0][0] = 0;
colorMap[1][0] = 0;
colorMap[2][0] = 0;
colorMap[3][0] = 0;
}
numColors = firstColor;
root.mapColors();
int width = pixels.length;
int height = pixels[0].length;
// determine bit depth for palette
int depth;
for (depth = 1; depth <= 8; depth++)
if ((1 << depth) >= numColors)
break;
Search search = new Search();
// convert to indexed color
for (int x = width; x-- > 0; ) {
for (int y = height; y-- > 0; ) {
int pixel = pixels[x][y];
int red = (pixel >> 16) & 0xFF;
int green = (pixel >> 8) & 0xFF;
int blue = (pixel >> 0) & 0xFF;
// create the right color model, depending on transparency settings:
IndexColorModel icm;
if (alphaToBitmask) {
if (addTransparency)
icm = new IndexColorModel(depth, numColors, colorMap[0],
colorMap[1], colorMap[2], 0);
else
icm = new IndexColorModel(depth, numColors, colorMap[0],
colorMap[1], colorMap[2]);
} else {
icm = new IndexColorModel(depth, numColors, colorMap[0],
colorMap[1], colorMap[2], colorMap[3]);
}
// create the indexed BufferedImage:
BufferedImage dest = new BufferedImage(source.getWidth(),
source.getHeight(), BufferedImage.TYPE_BYTE_INDEXED, icm);
// walk the tree to find the cube containing that color
Node node = root;
for ( ; ; ) {
int id = (((red > node.mid_red ? 1 : 0) << 0) |
((green > node.mid_green ? 1 : 0) << 1) |
((blue > node.mid_blue ? 1 : 0) << 2) );
if (node.child[id] == null) {
break;
}
node = node.child[id];
}
boolean firstOut = true;
if (dither)
new DiffusionFilterOp().filter(source, dest);
else {
Search search = new Search();
// convert to indexed color
byte[] dst = ((DataBufferByte) dest.getRaster().getDataBuffer()).getData();
if (QUICK) {
// if QUICK is set, just use that
// node. Strictly speaking, this isn't
// necessarily best match.
pixels[x][y] = node.color_number;
for (int i = 0; i < pixels.length; i++) {
int pixel = pixels[i];
int red = (pixel >> 16) & 0xff;
int green = (pixel >> 8) & 0xff;
int blue = (pixel >> 0) & 0xff;
int alpha = (pixel >> 24) & 0xff;
if (alphaToBitmask)
alpha = alpha < 0x80 ? 0 : 0xff;
if (alpha == 0 && addTransparency) {
dst[i] = 0; // transparency color is at 0
} else {
// Find the closest color.
search.distance = Integer.MAX_VALUE;
node.parent.closestColor(red, green, blue, search);
pixels[x][y] = search.color_number;
// walk the tree to find the cube containing that color
Node node = root;
for (;;) {
int id = (((red > node.midRed ? 1 : 0) << 0)
| ((green > node.midGreen ? 1 : 0) << 1)
| ((blue > node.midBlue ? 1 : 0) << 2) | ((alpha > node.midAlpha ? 1
: 0) << 3));
if (node.children[id] == null) {
break;
}
node = node.children[id];
}
if (QUICK) {
// if QUICK is set, just use that
// node. Strictly speaking, this isn't
// necessarily best match.
dst[i] = (byte) node.colorIndex;
} else {
// Find the closest color.
search.distance = Integer.MAX_VALUE;
node.parent.closestColor(red, green, blue, alpha,
search);
dst[i] = (byte) search.colorIndex;
}
}
}
}
return dest;
}
/**
@ -496,82 +591,87 @@ public class Quantize {
// parent node
Node parent;
// child nodes
Node child[];
int nchild;
// children nodes
Node children[];
int numChildren;
// our index within our parent
int id;
// our level within the tree
int level;
// our color midpoint
int mid_red;
int mid_green;
int mid_blue;
int midRed;
int midGreen;
int midBlue;
int midAlpha;
// the pixel count for this node and all children
int number_pixels;
int numPixels;
// the pixel count for this node
int unique;
// the sum of all pixels contained in this node
int total_red;
int total_green;
int total_blue;
int totalRed;
int totalGreen;
int totalBlue;
int totalAlpha;
// used to build the colormap
int color_number;
// used to build the colorMap
int colorIndex;
Node(Cube cube) {
this.cube = cube;
this.parent = this;
this.child = new Node[8];
this.children = new Node[MAX_CHILDREN];
this.id = 0;
this.level = 0;
this.number_pixels = Integer.MAX_VALUE;
this.mid_red = (MAX_RGB + 1) >> 1;
this.mid_green = (MAX_RGB + 1) >> 1;
this.mid_blue = (MAX_RGB + 1) >> 1;
this.numPixels = Integer.MAX_VALUE;
this.midRed = (MAX_RGB + 1) >> 1;
this.midGreen = (MAX_RGB + 1) >> 1;
this.midBlue = (MAX_RGB + 1) >> 1;
this.midAlpha = (MAX_RGB + 1) >> 1;
}
Node(Node parent, int id, int level) {
this.cube = parent.cube;
this.parent = parent;
this.child = new Node[8];
this.children = new Node[MAX_CHILDREN];
this.id = id;
this.level = level;
// add to the cube
++cube.nodes;
++cube.numNodes;
if (level == cube.depth) {
++cube.colors;
++cube.numColors;
}
// add to the parent
++parent.nchild;
parent.child[id] = this;
++parent.numChildren;
parent.children[id] = this;
// figure out our midpoint
int bi = (1 << (MAX_TREE_DEPTH - level)) >> 1;
mid_red = parent.mid_red + ((id & 1) > 0 ? bi : -bi);
mid_green = parent.mid_green + ((id & 2) > 0 ? bi : -bi);
mid_blue = parent.mid_blue + ((id & 4) > 0 ? bi : -bi);
midRed = parent.midRed + ((id & 1) > 0 ? bi : -bi);
midGreen = parent.midGreen + ((id & 2) > 0 ? bi : -bi);
midBlue = parent.midBlue + ((id & 4) > 0 ? bi : -bi);
midAlpha = parent.midAlpha + ((id & 8) > 0 ? bi : -bi);
}
/**
* Remove this child node, and make sure our parent
* absorbs our pixel statistics.
* Remove this children node, and make sure our parent absorbs our
* pixel statistics.
*/
void pruneChild() {
--parent.nchild;
--parent.numChildren;
parent.unique += unique;
parent.total_red += total_red;
parent.total_green += total_green;
parent.total_blue += total_blue;
parent.child[id] = null;
--cube.nodes;
parent.totalRed += totalRed;
parent.totalGreen += totalGreen;
parent.totalBlue += totalBlue;
parent.totalAlpha += totalAlpha;
parent.children[id] = null;
--cube.numNodes;
cube = null;
parent = null;
}
@ -580,10 +680,10 @@ public class Quantize {
* Prune the lowest layer of the tree.
*/
void pruneLevel() {
if (nchild != 0) {
for (int id = 0; id < 8; id++) {
if (child[id] != null) {
child[id].pruneLevel();
if (numChildren != 0) {
for (int id = 0; id < MAX_CHILDREN; id++) {
if (children[id] != null) {
children[id].pruneLevel();
}
}
}
@ -593,78 +693,82 @@ public class Quantize {
}
/**
* Remove any nodes that have fewer than threshold
* pixels. Also, as long as we're walking the tree:
*
* - figure out the color with the fewest pixels
* - recalculate the total number of colors in the tree
* Remove any nodes that have fewer than threshold pixels. Also, as
* long as we're walking the tree: - figure out the color with the
* fewest pixels - recalculate the total number of colors in the
* tree
*/
int reduce(int threshold, int next_threshold) {
if (nchild != 0) {
for (int id = 0; id < 8; id++) {
if (child[id] != null) {
next_threshold = child[id].reduce(threshold, next_threshold);
int reduce(int threshold, int nextThreshold) {
if (numChildren != 0) {
for (int id = 0; id < MAX_CHILDREN; id++) {
if (children[id] != null) {
nextThreshold = children[id].reduce(threshold,
nextThreshold);
}
}
}
if (number_pixels <= threshold) {
if (numPixels <= threshold) {
pruneChild();
} else {
if (unique != 0) {
cube.colors++;
cube.numColors++;
}
if (number_pixels < next_threshold) {
next_threshold = number_pixels;
if (numPixels < nextThreshold) {
nextThreshold = numPixels;
}
}
return next_threshold;
return nextThreshold;
}
/*
* colormap traverses the color cube tree and notes each
* colormap entry. A colormap entry is any node in the
* color cube tree where the number of unique colors is
* not zero.
* mapColors traverses the color cube tree and notes each colorMap
* entry. A colorMap entry is any node in the color cube tree where
* the number of unique colors is not zero.
*/
void colormap() {
if (nchild != 0) {
for (int id = 0; id < 8; id++) {
if (child[id] != null) {
child[id].colormap();
void mapColors() {
if (numChildren != 0) {
for (int id = 0; id < MAX_CHILDREN; id++) {
if (children[id] != null) {
children[id].mapColors();
}
}
}
if (unique != 0) {
int r = ((total_red + (unique >> 1)) / unique);
int g = ((total_green + (unique >> 1)) / unique);
int b = ((total_blue + (unique >> 1)) / unique);
cube.colormap[cube.colors] = ((( 0xFF) << 24) |
((r & 0xFF) << 16) |
((g & 0xFF) << 8) |
((b & 0xFF) << 0));
color_number = cube.colors++;
int add = unique >> 1;
cube.colorMap[0][cube.numColors] = (byte) ((totalRed + add) / unique);
cube.colorMap[1][cube.numColors] = (byte) ((totalGreen + add) / unique);
cube.colorMap[2][cube.numColors] = (byte) ((totalBlue + add) / unique);
cube.colorMap[3][cube.numColors] = (byte) ((totalAlpha + add) / unique);
colorIndex = cube.numColors++;
}
}
/* ClosestColor traverses the color cube tree at a
* particular node and determines which colormap entry
* best represents the input color.
/*
* ClosestColor traverses the color cube tree at a particular node
* and determines which colorMap entry best represents the input
* color.
*/
void closestColor(int red, int green, int blue, Search search) {
if (nchild != 0) {
for (int id = 0; id < 8; id++) {
if (child[id] != null) {
child[id].closestColor(red, green, blue, search);
void closestColor(int red, int green, int blue, int alpha,
Search search) {
if (numChildren != 0) {
for (int id = 0; id < MAX_CHILDREN; id++) {
if (children[id] != null) {
children[id].closestColor(red, green, blue, alpha,
search);
}
}
}
if (unique != 0) {
int color = cube.colormap[color_number];
int distance = distance(color, red, green, blue);
int distance = distance(
cube.colorMap[0][colorIndex] & 0xff,
cube.colorMap[1][colorIndex] & 0xff,
cube.colorMap[2][colorIndex] & 0xff,
cube.colorMap[3][colorIndex] & 0xff, red, green, blue,
alpha);
if (distance < search.distance) {
search.distance = distance;
search.color_number = color_number;
search.colorIndex = colorIndex;
}
}
}
@ -672,10 +776,18 @@ public class Quantize {
/**
* Figure out the distance between this node and som color.
*/
final static int distance(int color, int r, int g, int b) {
return (SQUARES[((color >> 16) & 0xFF) - r + MAX_RGB] +
SQUARES[((color >> 8) & 0xFF) - g + MAX_RGB] +
SQUARES[((color >> 0) & 0xFF) - b + MAX_RGB]);
final static int distance(int r1, int g1, int b1, int a1, int r2,
int g2, int b2, int a2) {
int da = a1 - a2;
int dr = r1 - r2;
int dg = g1 - g2;
int db = b1 - b2;
return da * da + dr * dr + dg * dg + db * db;
// return (SQUARES[r1 - r2 + MAX_RGB] +
// SQUARES[g1 - g2 + MAX_RGB] +
// SQUARES[b1 - b2 + MAX_RGB] +
// SQUARES[a1 - a2 + MAX_RGB]);
}
public String toString() {
@ -688,14 +800,16 @@ public class Quantize {
buf.append(' ');
buf.append(level);
buf.append(" [");
buf.append(mid_red);
buf.append(midRed);
buf.append(',');
buf.append(mid_green);
buf.append(midGreen);
buf.append(',');
buf.append(mid_blue);
buf.append(midBlue);
buf.append(',');
buf.append(midAlpha);
buf.append(']');
return new String(buf);
}
}
}
}
}